
AD-Ri48 192 PERFORMANCE EVALUATION OF A DATABASE SYSTEM IN A i/l
MULTIPLE BACKEND CONFIGURATIONS(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA S A DEMURJ IAN ET AL. OCT 84

UIIEDIIII5 III4IIIIIIIII9/2 I

INONE]f

l'w

11 .60 Im -

*1.25 IA~~

MICROCOPV RESOLUTION TEST CHART

olalscamo a @MA ST saMAM -loss- A

NPS52-84-019

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTV I

PERFORM4ANCE EVALUATION OF A DATABASE SYSTEM
IN A MULTIPLE BACKEND CONFIGURATIONS

Steven A. Demurjian, David K. Hsiao, Douglas
.6 S. Kerr, Jai Menon, Paula ft. Strawser,
P. Robert C. Tekampe, Robert J. Watson

October 1984

LAJ Approved for public release, distribution unlimited

Arlington, VA Researc

84 12 03 027K

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Comodore R. H. Shumaker 0. A. Schrady
Superintendent Provost

The work reported herein was supported by Contract N00014-WR-24058

form the Office of Naval Research

Reproduction of all or part of this report is authorized.

This report was prepared by:

AVI1 K..siAo
Professor of Computer Science

t.

Reviewed by: |o

.MACENNANActig4KNEAL .ASHALL "
* Department of Computer Science Dean of Information and P cy

Sc nces

If.4

q

* ~~SECURITY CLASIIFICATION OF TWIS5 PAGE (Whm Do** EMWe __________________*.

REPOR DOCM ENTATIO PAGE___________
* .- RPR Mumma 11 CISISSMYS CATAL" aWUE

NPS5-84-019________________

4. TITLIE (und Sablfide) S. P OFp * REPORT a~m~ 1101110COVeeu1
Performance Evaluation Of A Database System
In a Multiple Backend Configurations______________

6. PEPOUmIU OR&. 111P1"T glows"

7. AUTHOR(e) OTAT11111I 99O

Steven A. Demurjian, David K. Hsiao, Douglas S.
*Kerr, Jai Menon, Paula R. Strawser, Robert C.

Tekampe, Robert J. Watson
9 . PERFORMING ORGANIZATION NAME AND A66D49111 10 V TASKI

* Naval Postgraduate School
- Monterey, California 93943 67.157"N; MV~14-R-V!.

N0OC'14P,4WP2409P
11. CONTRPOLLING OF FICE NAMC AND ADDRESS 112. REPORT SATE

Chief of Naval Research lthr1A

Arlington, Virginia 22217 .MUEROPGS

* II~1. MONITORING AGENCY NAME & ADDRESSI'10 Astern, "a. coafts1 om=7 I&. SECUftTY ClASS (a am*e~u

unclassified

* so. DISTROIBUTION STATIEMENT (ofti 5.qWMe)

* ? ISTRIUIUTION STATEMENT (of Me. aA.Oaul aImd in 81.6k 3. It 410dtea buM 1110e

I&. SUPPLEMENTARY NOTES

* 19. KEY WORMS (Cu~fw rew uu *..4f 810080"WuA old t II bb.* mliii ftM6@

S. AOSNACT (Ca,. a, WS 0ewa 10 086A a.Mv 011001 IV 0100 mmhe
* The aim of this performance evaluation is twofold: (1) to devise bench-

* marking methodologies to the measurement of a prototyped database system in
multiple backend configurations, and (2) to verify the performance claims as
projected or predicted by the designer and implementor of the multi-backend
database system known as MBDS.

Despite the limitation of the backend hardware, the benchmarking experiments
have proceeded well, producing startling results and good insights. By collec-

ala

DD I. JAN .. 145 ..w or* v Rev asw s

unclassified
SaNc Wv? CLASUPSCA?1O OF T"IS P~a t 4Um 3W. R"Wo

perfvmmmce masurements of BDS have been conducted. By colating micro-
scopic data suclias-the tine,,Mtertp9 and leaving a system process, the internal
performance measurements of lii5 have ben carried out. Methodologies for coo- a

structing test databases, directories, and requests have been devised and utiliz-
ed. The performance evaluation studies verify that (a) when the database remains
the same the response time of a request can be reduced to nearly half, if the *

number of backends and their disks is doubled; (b) when the response set of a
request doubles, the response time of the query remains nearly constant, if the
number of backends and their disks is doubled. These were the performance claims
of NBDS as predicted by its designer and implementor.

t r

.spcal

DISL

9I-.-.-,

[

.' .,

Ipecial

WCWIIT oAUPCA.O OF. o,,..o,-"", DW SM0

FEW FOOE EVNJATION OF A MTP8#MS SvtSlBA
IN bULTILE BAOV COWFI ATIONS *

Steven A. Demurj ian, Dev id K. Heiaso, ouglIas S. Kerr, A i Mnsont,
* PaulIs R. Strawsr, Robert C. Tekuppe, Robert'J. Watson *

October 1984

Teaim of this performance *valuation is twofold: (1) to devise bench-

of a prototyped database systom in multiple backend conf igurations, and (2) to
verify the performance claim as projected or predicted by the designer and
inpI emenitor of the mukl ti-backend databae system know as AECS.

Despite the limitation of the backend hardware, the benchmarking experi-
* mensts have proceeded well, producing startlimng results and good insights. By

* col lecting macroscopic date such as the response time of the request, the
* external Iperformance measurements of MES have been conducted. By col lecting
* microscopic date such as the time entering and leaving a systemn process, the
* internal performance measuremnents of MMSD have been carried out. Mathodo lo.-

gies for constructing test databases, directories, and requests have been dey- -

*ised and utilized. 'The performance evaluation studies verify Va~t (a) when

the database remsains the same the response time of a request can be reduced to
nearly half, if the number of beckends and their disks is doubled; (b) when

* the response set of a request doubles, the response time of the query remains
nearly constant, if the number of backenda and their disks is doubled.. These
were the performance claims of WES6 as predicted by its designer and implemein-

* tor V

Pse ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .wo 0 ri.i upre otatWO48 -45
Ice0 We I

ram the Syst iem Resarch Reevcad tg at t Labratory

rJ rsin.an4 D. K. 1-ia4 re with J9Lsborp or Dabws
hcn M!- i era I W4 en1~

Ijacer nr' 1eo 9. wktlh raining Division:

ri r0s. I

4*4

The multi-backend database system (ME6) is a database system designed

specifically for capacity growth and performance enhancement. M3DS consists

of two or more minicomputers and their dedicated disk systems. One of the

minicomputers serves as a control ler to broadcast the requests to and receive

the results from the other minicomputers, which are configured in a paral lel'4

manner and are termed as backends. All the backend minicomputers are identi-

cal, and run identical software. The database is evenly distributed across the

disk drives of each backend by way of a cluster-based data placement algoritlhm

unknown to the user. User access to the MS is accomplished either via a
- host computer, which in turn communicates with the DS controller, or with

the MlBDS controller directly. Communication between the controller and back-

ends is accomplished using a broadcast bus. An overview of the system archi-

tecture is given in Figure 1.

There are two basic performance claims of the multi-backend database Sys-

tern, which have been projected in the original design goals [siaSla,

Hsia8lb]. The first claim states that if the database size remains constant,

then the response time of requests processed by the system is inversely pro-

portional to the multiplicity of backends. This claim implies that by increas-

ing the number of backends in the system and by replicating the system

software on the new backends, M3DS can achieve a reciprocal decrease in the

response time for the same requests. The second claim states that the

response time of requests is invariant when the response set and the multipl i-

*. city of backends increases in the same proportion. This claim implies that

.4 when the database size grows, the response set for the same requests will

grow. By increasing the number of backends accordingly, M3DS can uaintain a

• .constant response time.

In this paper we provide s preliminary evaluation of the validity of the

M3DS performance claims. The main focus of this paper is on the external
performance measurement of EDS. The external performance measurement eva lu-

ates a system by collecting the response times of requests. External perfor-

mance measurement is a macroscopic evaluation of the system. Ingres, Oracle, .

and the Britton-Lee I[M/500, have all been evaluated using external perfor-

mance measurement techniques [StraS4, Schi84]. We also seek to provide m

insight into the internal performance of MbS. Internal performance measure- -'

merit provides a microscopic view of a system, by col lecting the times of the

..- 1- % 4

.. .- ,, ... *., ,,.._.. .. ,.,...*..',' ,,.,,,'.'*.,.,**...:.** * 4 4 4 . %' .,- .;:,;,.'.,> ,, ,.",.,"
%."%4 ** ..

.*.%

one or more

disk drives

one or nor&

To the f _

host _-Controller
It

'

.

one or more
disk drives

Broadcasting
bus 'V.

rTiure 1. The ?DBS Hardware Organ:ation
•, °

work distributed and performed by the system components.

The remainder of this paper is organized as fol ton. In Section 2 we

provide a brief overview of the multi-beckend databese system. In Section 3

we discuss the general testing stratqe that wa used to evealuste the system.

in Section 4 we examine the evaluetion results. Final ly, in Section 5 we con-

clude this paper and sumvrize the resuts.

2. liE MULI-BCKOO DtATMWS SYSIW(wES

The current hardware configuration of WES consists of a VAX-11,fTS (%Z6
OS) running as the controllecr and two PCOP-11/44s (RSX-12M OS) running as beck-
ends. Intercomputer comumnication is supported by three parallel communication

l inks MP.-lla), which is a tima-divisioned-multiplexed bus. The implemente-

tion efforts are documented in ([(rre2, He82, 9oyr'Ot, DmmB4]. MID is a
mssage -oriented system (see [DnM]). In a message-or iented system, each

prCoces Corrpods to one system function. These processes, then, communicate
among themselves by passing message.. Waer requests are passed betwe
processes as lmssae. The mage- peths betweene processes are f ixed for the

system. The M3CS processes are crested at the start-W time and exist

* throug~out the entire rning time of the system. 2.

In the rest of this section we begin by discussing the date model of
hUCB, the attribute-beed date model. Then, me present a brief review of the

attribute-based date l anguaage (ABL) of MODS by focusinrg on the retri eve

request on ly. Next, me discuss the directory structure used in the system,
* since it plays an integral role in the specification of the test database (a

Section 3). Lastly, me overview the execution of a IFORME request, to pro-

vide a general overview of the structure and the operation of hUMS.

2.1. The Attribute-Based Dats e

In the attributebased date model, date is modeled with the constructs: ...

daaae file, recor, attribute-value pair, directory keyword, directory,

record body, kewrd predicate, and query. Informal ly, a database consists of
a collection of files. Each file contains a group of records which are

characterized by a unique set of directory keywords. A am is copsdof
tw parts. The first part is a collection of attribute-value pairs or key-

words. An attribute-value pair is a meaber of the Cartesian product of the

attribute name anid the value domain of the attribute. As an oxuiple, 4'CRI-

LATION, 25000> is an attr bute-value pair having 25000 as the value for the

population attribute. A record contains at most one attribute-value pal r for

each attribute defined in the database. Certain attribute-value pairs of a

record (or a file) are called the directory keywords of the record (file),

because either the attribute-value pairs or their attribute-value rang.. are

kept in a directory for addressing the record (file). Those attribute-value
pairs which are not kept in the directory for addressing the record (file) are

cal led non-directory keywords. The rest of the record is textual information,

which is referred to as the record body. An example of a record is shown

below.

(<ILE, Census>, <CITY, Monterey>t 4fCRATIN 250003>)

The angle brackets, <,>, enclose an attribute-value pair, i.e., keyword. The

curly brackets, {,}, include the record body. The first attribute-value pair

- of all records of a file is the sme. In particular, the attribute is FILE
and the value is the file name. A record is enclosed in the parenthesis. For

- example, the above sample record is from the Census fi le.

The database is accessed by indexing on directory keywords using keyword

predicates. A keyword predicate is a tuple consisting of an attribute, a

relational operator (=,=, >, <, > <=), n attribute value, e.g., PORJ-

LATION)> 20000 is a keyword predicate. More spec ificall y, it is a greater-

than-or-equal-to predicate. Combining keyword predicates in disjunctive nor-

mal form characterizes a quea of the database. The query

CE .='ensus and CZYMonterey) or
(~-.LLCensus and ;iY=Sen kare)

will be satisfied by all records of the Census file with the C11Y of either

Monterey or San Jose. For clarity, we also employ parentheses for bracketing

predicates in a query.

2.2. The Attribute-Based Date Language

.Mb96 is designed to perform the primary database operations, INSERT,

DE.TE, UIDTE, and 1REIEVE. Additional ly, an aggregate operation (i .e., '

AVG, CWT, SM, MIN, or MAX) may be appli ad when using the FIERIEME opera-

tion. Uiers, access WS throug the host computer or the control Ier by issu-
ing a request. A reques is a primary operation along with a qual ification. A

. qualification is used to specify the information of the database that is to be

•... %@, -_
I
I
-) •i -

I
• I I I - I i•
I

I I I , i •" i *"I"
I

j .I -i . .
I

I - * - i i IIi Ii ii t til Ii 1 w i I I• ., b

performed by the primary operation. A user may wish to treat two or more

requests as a transaction. In this situation, DS executes the requests of

the transaction without permuting them, i.e., if T is a transaction containing

the requests <RIA2>, then WE][executes the request RI before the request

R2. Finally, we define the term traffic-unit to represent either a single

request or a transacti on i n executi on.

Now, let us examine the retrieve request, the main focus of our study in

this paper. An example of a retrieve request would be:

IF'IEVE ((FILE = Census) and (ORLATION > 10000) (CITY)

which retrieves the names of all those cities in the Census file whose popula-

tion is greater than 10000. Notice that the qualification component of a

retrieve requ-t consists of two parts: the query which specifies records of

the database to be retrieved and the target list which specifies the

attribute-value(s) to be returned to the user. Aggregate operators may be

appl ied to attributes listed in the target list. In this example, there is

the query of two predicates ((FILE = Census) and (PURJLATION > 10000)) and the

target list (CITY).

2.3. The Directory Tables

To manage the database (often referred to as user data), WDS uses di rec-

tory data. Directory data in WDS corresponds to attributes, descriptors, and

clusters. An attribute is used to represent a category of the user date; e.g.,

P(JRLATION is on attribute that corresponds to actual populations stored in

the database. A descriptor is used to describe a range of values that an

attribute can have; e.g, (10001 < PORIATON < 15000) is a possible descriptor

for the attribute POFILATION. The descriptors that are defined for an attri-

bute, e.g., population ranges, are mutually exclusive. Now the notion of a

cluster can be defined. A cluster is a group of records such that every record

in the cluster satisfies the same set of descriptors. For example, all records

with POG.ATION between 10001 and 15000 may form one cluster whose descriptor

is the one given above. In this case, the cluster satisfies the set of a sin-

gle descriptor. In reality, a cluster tends to satisfy a set of multiple

descriptors.

Directory information is stored in three tables: the Attribute Table

(AT), the Descriptor-to-)escriptor-Id Table (MD) and the Cluster-Definition

. * '- - ..-.-

Table (CDT), examples of which are given in Figure 2. The Attribute Table maps

directory attributes to the descriptors defined on then. A sample AT is dep-

icted in Figure 2a. The Descriptor-to-Descriptor-Id Table maps each descrip-

tor to a unique descriptor id. A sample DIT is given in Figure 2b. Nc..

that the pointers shown in Figure 2b are not placed in the [DIT table but are

shown here for clarity in order for us to relate to the AT of Figure 2a. The

Cluster-Definition Table maps descriptor-id sets to cluster ids. Each entry .

consists of the unique cluster id, the set of descriptor ids whose descriptors

define the cluster, and the addresses of the records in the clusters. A sample

CDT is shown in Figure 2c Thus, to access the user data, we must first access

d i rectory data via the AT, EDIT, and CDT.

In designing the test database, one of the key concepts is the choice of

the directory attributes in order to determine the necessary descriptors and

therefore clusters. Thus, we provide a brief introduction to the three clas-

sifications of descriptors. A typ-A descriptor is a conjunction of a less-

than-or-equal-to predicate and a greater-than-or-equal-to predicate, such that
the same attribute appears in both predicates. For example, ((POR.LATION >=-

10000) and (PRL.ATION <= 15000)) is a type-A descriptor. A jy-8 descriptor

consists of only an equality predicate. (FME = Census) is an example of a

type-B descriptor. Final ly, a typ!-C descriptor consists of the name of an

attribute. The type-C attribute defines a set of type-C sub-descriptors.

]yR-C sub-descriptors are equal ity predicates defined over all unique attri-

bute values which exist in the database. For example, the type-C attribute

CITY forms the type-C sub-descriptors (CIY=Cumberland) and (CITY=Columbus),

where "Cumberland" and "Columbus" are the only unique database values for the

cry.-

2.4. The Execution of a Retrieve Request

In this section, we describe the sequence of actions for a retrieve

request as it moves through WBD6. The sequence of actions will be described in

terms of the messages passed beteen the I1D6 processes. The MBS control ler

processes are Request Preparation (IREC), Insert Information Generation (IIG),

and Post Processing (PP). The MBD backend processes are Directory Management

Record Processing (RECP) and Concurrency Control (CC). For conpleteness,
we describe the actions which require date aggregation.

-6-

Attribute Ptr
PVRLATION D. *

FILE F

Figure 2a. An Attribute Table (AT)

P-> 0< PODJUATION < 50000O DII

50001 < POR.ATION < 100000 D12

100001 < POLAION < 250000 D13

250001 <P 'aION < 500000 J D14
C-> CITY = Cumberland I D21

CMY = Columb~us D22

F-> FILE = Employee j D81
FILE = Census ID2

Dij: Descriptor j for attribute i.

Figure 2b. A Descriptor-to-Descriptor-Id Table

Id Desc-Id Set Addr

CI_ {D2I,D21,081} A1,A2

C2 i {D14,D22,D2) I A

Figure 2c. A Cluster-Definition Table (CDI)

Figure 2. The Directory Tables

First the retrieve request comes to FEW from the host computer or the
control ler itself. RE sends two messages to PP: the number of requests in
the transaction and the aggregate operator of the request. The third message
sent by FEW is the parsed traffic unit which goes to IM in the backends. ICM
sends the type-C attributes needed by the request to CC. Since type-C attr-

butes may create new type-C sub-descriptors, the type-C attributes must be
locked by CC. Once an attribute is locked and descriptor search can be per-

formed, CC signals CM. [M will then perform Descriptor Searchon m/n

-7-
16 4

predicates, where m is the number of predicates specified in the query, and n

is the number of backends. DI then signals CC to release the lock on that

attribute. CMi will broadcast the descriptor ids for the request to the other
backends. EMd now sends the descriptor-id groups for the retrieve request to

CC. A descriEt id gru is a col lecton of descriptor ids which define a
set of clusters needed by the request. Decriptor-id groups are locked by CC,
since a descriptor-id group may define a new cluster. Once the descriptor-id

groups are locked and Cluster Search can be performed, CC signals Dt. DMI will

then perform Cluster Search and signal CC to release the locks on the

descriptor-id groups. Next., Il will send the cluster ids for the retrieval to

CC. CC locks cluster-ids, since a new address may be specified for an exist-

ing cluster. Once the cluster ids-are locked, aid the request can proceed
with Address Generation and the rest of the request execution, CC signals Di.

M will then perform Address Generation and send the retrieve request and the

addresses toe RECP. Once the retrieval has executed properly, RECP will t ell

CC that the request is done and the locks on the cluster ids can be released.

The retrieval results are aggregated by each beckend and forwarded to PP. PP

ccmpletes the aggregation after it has received the partial results from every

beckend. When PP is done, the final results will be sent to the user.

3. 1E BOWAR S1TWE(W

In this section we analyze the basic benchmark stratAey for the prelim-

inary performance evaluation of the multi-back nd database system. The bench-

mark stratAW focuses on collecting macroscopic and microscopic measurements

on the systems performance. Macroscopic measurementis correspond to the exter-

nal performance measurement of the system, which col lects the response time of

requests that are processed by the system. Internal performance measurement

involves the detai led measurement of the working processes of the system. In

particular, we are measuring the time taken to process a particular message in

WES. Each MRID process has a group of functions, cal led message-handlers,

that control and oversee the processing of a message. The time spent in a
particular message-hanler is collected in internal performance measurement.

To adequately conduct both the internsl and external perfrmnce measure-

ment of the system, software was developed to col lect timing informtion and

data. The performance software was bracketed in cond itionael c pi letion

statements to faci I itate an easy transition betwee a testing system and a

running ystem. We constructed tw software baem of the ME[S. The first

,, ;'.'..:' .- ' . "..,' . .''*.,:'' . "''" ...'. .4 ,;, ."r , " . ." "... ._. .' . ,", .".". . ..".".-.8-" ., .- -.:

I

consisted of the uD code and only the testing software required for external

performmnce measurement. The second had the testing software for both the

internal and external performance measurement software cotpi led in. We hope

to use the difference in timings col lected from the two bases to calculate the L

* overhead incurred by the addition of internal performnce measurement

software.

"The rest of this section is organized as follows. First, we give a

high-level description of the test database organization and system configura-

tirs used in the performance evaluation. Next, we present a detailed discus-

sion of the test database organization. Third, we examine the request set

used to col lect the timings. Final ly, we review the relevant tests that are

to be conducted, and the measurement statistics that are collected and calcu-

I ated.

3.1. The Test Database Organization and Testing Configurations

To properly evaluate a database system, various record sizes need to be

used. The sizes are chosen based on the size of the unit of disk management.

In MUDS, this is the block. MDS processes information from the secondary

memory using a 4Kbyte block. Given a blocksize of 4Kbytes, it was reconunended

to construct the database with record sizes of 200 bytes, 400 bytes, 1000

bytes, and 2000 bytes [Stra84]. This gives a range of 2 to 20 records per

block. Since we are engaged in only the first test of lB[S, we limited the

scope of the test ing to a database w ith a 200 byte record s ize.

In addition, the virtu l and physical memory limitations of each backend

restricted the database size to a maximum of 1000 records per backend. This

limitation, coupled with the two software versions of the system and the need

to verify the two performance claims, led us to the specification of five dif-

ferent system configurations for the MeDS performance measurements. Table 1

TEST I No. of Backends I Records/Bckend I Database Size

Tabl I1 . The Measurement Conf igurations
* .'i,*.

displays the configurations. 'A

Tests A.E, B.E, and C.E are conducted without internal performance
software in place. Test A.E configures MBD with one backend and one tousand
records in the test database. Test B.E configures M3DS with two backends and ON

one thousand records split evenly between the backends. The transition from
Test A.E to Test B.E is used to verify the first performance claim (see Sec-
tion 1). Test C.E also configures bLD with two bckends, but, the size of
the database is doubled to two thousand records. The transition from Test A.E r:.
to Test C.E is used to verify the second performance claim (see Section 1).
Test A.I and B.I are conducted with internal performance software in place.

Test A.I configures MUD with one backend and one thousand record* in the test
database. Test B.I configures MEDS with two backends and one thousand records

split evenly between the backends. The transitions from A.E to A.I and from

B.E to B.I are used to determine the overhead incurred by the addition of
internal performance measurement software. Overall, using these five confi-
gurations, the verification of the lEDS performance and capacity claims is
simplified and the performance measurement methodology of computing the inter-
na I measurement overhead is fac i I itated.

3.2. The Detai led Test Database Organization

We have chosen the test record size to be 200 bytes. The 200-byte record

minimizes the primary memory required to store the record template. In actu-
al ity, a record of 198 bytes is used. The record consists of 33 attributes,

each requiring 6 bytes of storage. The record template is used to specify the

attributes, both the directory and the non-directory attributes, of the

record. Of the 33 attributes listed (see Figure 3), IM and INTE2 are
directory attributes. MLLTI and S1ROO to Sfl29 are non-directory attributes.

Attribute N m I Attr i bute Type

I&IE1 gntegprM{I ntqr ':-"
Wstr ng
string
str i ng

S11f29 stri ng

Figure 3. The Record Template L

-10-

- ~. C ' -

The descriptor types and the descriptor ranges for the two directory
att.ributes, INME1 and IN1E2, must also be defined. The values for INME r are
classified by using five type-A descriptors, each of which represents a range

of 200, i.e., the ranges would be [1,200], (201,400], ... , #801,1000], where
[a,b] is used to represent the type-A descripto rge. The values for I4E2

are also classified using type-A descriptors. The first twenty-three ranges
for I E2 cover 40 values, with the last range covering 80 values, i.e., the
type-A descriptor ranges would be [1,40], [41,80], ... , [,92], [921,1000].

The INTE2 descriptor ranges are not uniform.

Next, we examine the records which are generated and stored in the test

database. NE1 and INTE2 have identical value, i.e., numbers, being the next

sequential number after the previous record, starting at 1. Therefore, the

one thousandth record would have the (INTE1, INTE2) pair set to 1000. The

MJLTI attribute, which is of the type of character string, is set to One for a

database of only 1000 records. The intent of this attribute is to increase
the number of records per cluster in the database. This is done by setting

MtLTI to Two, Three, etc., for each (INTEl, INTE2) pair in the database.

Therefore, to double the size of the database, every (INTEI, INTE2) pair will

have an associated M.fLI attribute with values of One and Two. The remaining

attributes, STROO to SIR29, are set to Xxxxx as fillers for the rest of the

record body. Figure 4 depicts the general layout of the file for 1000 records

where MAJLI is set to One.

+'ff; INTE21MULTIlSTROOID IM .. S1R

1 1 xxxx Xxxxx ... Xxxxx
2 2 e xxxx Xxxxx ... Xxxxx

1000 1000 One Xxxxx Xxxxx ... XxxxxI...-.I

Figure 4. The Generated Records

The cross-product of INTE1 ranges and INTE2 ranges has resulted in the

specification of 24 descriptor groups for the INTEl and INTE2 attributes. Cou-

pled with the record tenplate, they generate a teast database that contains 24

clusters. The first 23 clusters contain 40 records each. The last cluster

contains 80 records. To maintain consistency in the retrieval requests (dis-

-11-

~. ~ . .**...**p** . . .* .. :N I7.~.* . . . i

** * S , * S S5' 5

cused in the next section), we avoid any requests that access the last 60

records i n the test datAtbase useinip the PM1E attr ibute.

3.3. T'he Request Set

V The request set used for our performance assurement is given in Figure

5. Thea retrievals are a mix of single or double predicate requests. Since

the majority of the work dane on a databese is to retrieve data, we l imit our

f irst meaasuremnts to onlIy retr ieve requests. In every request, 1/2 of the

target attr ibute valIues; for each record isa returned. The f irst request isa for .

* only two records from two seprate clusters. The second request retrieves 1/4

of the database. Seven of the 24 clIusters must be examineod. AlI rds in

each of the f irst s ix clIusters are retr ieved. On ly 1/4 of the seventh clIus-
ter, def ined by the INTE2 rang. f ram 241 to 29D, isa retr ieved. In the th ird

request, 1/2 of the database isi retrieved. Thirteen of the 24 clusters must

be examineod. All records i n each of the f irst twoeIve clIusters ore returned.

OnlIy 1/2 of the th irteenth clIuster, def ined by the INTE2 r an f rom 481 to

* 52D, is retrieved. The system searches only for records having values in tOw
IN1E2 range from 481 to 500 in this cluster.

The entire database is examined in the fourth request. The fifth request

retrieves 2/5 of the database. The query is divided into two predicates, to

Request N'uber I Retrieval Request

1I (INTE110) or (INTE130)
2 (INM <2U0)

4 I(Vanl <z 1000)
5 1 (INTE<20) or (INMTE1)

6 I (MINE<400) or (INIE1)1

7 I(INTEl <-201)
8 (INM~ <= 401)

I' 9 I (INM1<W0) or (INTE>u80)

The Target Attribute-Values for Each:

Figure S. The Retrieval Requests

-12-

obta in all records f ram the f irst f i ve clIusters, and the Ilast four clIusters.
The sixth request is a retrieval of 4/5 of the databese. Apin the query is
divided into two predicates, to obtain all records f ram. the f irst 10 clusters,
and the l ast n ine clIusters.

The seventh and eighth requests are simi lar in intent. The seventh
request examines 10 clusters, requiring only 1 record to be retrieved from the
8th clIuster and need ing all records f ram the f irst f ive clIusters. The a i gth
request examines 15 clusters, requi ring only 1 record to be retrieved from the
11th cluster anid needing all records from the first ten clusters. The n inth
and final request is similar to the fifth request. But unlike the fifth
request, ton additional clusters must be examined. Only two of the records
with INWEl values of 201 and 601, are retrieved from the ten additional clus-
tars. All records i n the remi n ing n ine clIusters, i ke the f ifth request, are
also obtained by this retrieval. Table 2, a presentation of the nusber of
clusters examined versus the percent of the database retrieved, is a synopsis
of the previous discussion in tabular form.

3.4. 'The Measurement Strategy, Statistics and. Limitations

The basic measurement statistics used in the performance evaluation of
M3DS is the response time of request(s) that are processed by the database
system. The repos time of a request is the time between the initial

RI.~s NI.rOf Y ueo

mwne Rtrieved b~.

1 2 2 records

313 sox
4 24 (all) 1005
5 9 I 405
8 19 sox

710 12X+l1record
8 15 1405 +1record
9 19 14(X + 2 records ..

Table 2. mhe Wjnber of Ciusters %sunined tnheai
Percent of the Ltabase i~trieve

-13-

isasuance of the r~equest by the user and the f inalI recei pt of the ent is!.
request sat Uer the request. The response times are collected for the request
set (ame Figure 6) for each of the f ive conf igurations, (aee Tabe,). Emcts
request is sent a total of ten times per database configuration. The respnse

time of each request is recorded. We determnine that ten repetitions of each
request produce an acceptable standard deviation. Ltmo completion of the ton
repetitions for.a request, we calculate the mean and the standard deviation oF
the ten response times. There are two main statistics that we calculate to
evaluate the MOS performance cla ims, the responste-ti me imnprovement and the
response-time reduction.

The resonstime imwprovement is def ined to be the percentag impyrovement
i n the repons tim of a request, when the request is executed in n heckende
as opedto one beckend end the number of records in the dtabase raw; na
the sm.Eqation 1 provides the formula used to calculate the responew me
improvement for a particular request, where Configuration, B represents n w
ends and Configuration A represents one backend. Te responee-th;m improveamn
is calculated for the configuration pairs (A.E, B.E) and (A.I, B.1), resec-
tively. The configuration pair (A.E, S.E) is evaluated for the retrieve
requests (1) throg (9) (see Tables 5 and 6). Thie pair (A.I, 5.1) is
evealusted onlty for the retr ieve requests (1) through (6) . Ovrall I, the
difference in the col.lected times of the two conf igurations, i.e., (Al-
A. E), and (B. I - B. E) , respect ivelIy, shoulId prov ide us w ith a measure of the

overhead incurred when internsal performance masurement software is present in
the system.

The ConfsTguratson A
Risponsi-Time lOOS - ONU

Imp~rovement
Configuration B

Equation 1. The Response-Time-Luprovement Calculation

The E!M -,time reduction is def ined to be the reduction i n response
time of a request, when the request is executed in n beckends containing nx
number of records as opsdto one back"n with x number of records. Equa-
tion 2 provides the formoula used to calculate the the response-time reduction - .

for a particular retrieval request, where configuration A represents one bac-
end with x records and configuration B represents n backends, each with x

records. The response-time reduction is calculated for the configuration peir

(A.E, C.E), for the retrieve requests (1) through (9).

Thf.Rese

- ReqnaThe a 1 Configuraton B

Conf iguration A A

Equation 2. The Response-Time-Reduction Calculation

The internal processing times of the mesage-handl ing routines which are
used to process a retrieval request are also timed. Retrieval (1) and

* Retrieval (2) are selected to conduct internal timing. These requests are

selected since they retrieve the seIaI lest portion of the test database and the

processing time for each request is minimal. Each message-handling routine is

timed independently of all others and each routine must process multiple
requests so that an accurate average may be computed for the time required to

process that request type. Sixteen message-handling routines are required to

process a retrieve request. If we send twenty requests to each routine, a
tots I of 320 requests must be processed by MEt. Based on thes figures, the

time required to conduct the internal performance measurement of a retrieval

that has a response time of twenty seconds will be approximately 107 minutes.

This figure does not include the administrative time required to process the

internal measurement date. For this reason, we limited the internal perfor-

mance measurement requests to request. (1) and (2).

Additional ly, we also limited the number of repetitions per message

. handler to twenty. This is done to reduce the proceming time per message
handler. However, this decision reduce* the accuracy of the internal perfor-

mance measurement, from ten-thousands to hundredths of a second. Thus, the

internal performance measurement times provide only a rough estimete of the
time required to handle the respective messages. There are additional l imit-
tions. The last two versions of MDS differ in the implementation of the

directory tables, i.e., the AT, the DDIT, and the CDT. The newest version of
the system, called Version F, implements the directory tables on the secondary

storage. The previous version, called Version E, stored the directory tables

in the primery memory. The major roadblock that we have encountered in the

performance measurement of .D has been the hardware I imitations of the beck-

!, -15-

a. -.....- a; - ,7 ; ; ; - < : ; -/ - ' ' : : : , ' . ' ' ./ ' ,' : : - ' + . ' - ' ', ' '' :. -: : .. ' '

sad processors (FL-11/44). With only6K of virtalmeinmry per processand a

system pereeters to permi t an extensive test of the system an a l arge dits-

S ~base. These. rstr ictions hove forced us -to benduierk the prim, y-mumrywise

directory management, version of the system which, excluding the directory

table manegemanc rouine, is nevertheless equivalent. in functDionlitry to Ver-

sion F.

p 4. lIE BBDWX"C WRLI

In this section, we present the results obtained from the performance
w amramit ofMR06 We lso evie theresuts o externalpefracmos

ursument, overh!a incurred by internal performance measurement aoftwore and
i nternalI performance rmarmn. One final note, the units of maearm

presented in the tables of this section are expressed in seconds.

4.1&. The Extrnal ruwrmance 11 0"emnt Result&

Table 3 provides the results of the external performance measurement of
M without the internal performance measurement softoore. There are three

parts to Table 3. Each partcontsins the mean and the standard deviation of
the reeoru times for requests (1) through (9), which are outlined in Section

3..The three perts of Table 3 represent three different conf igurations of

z MS with one beckenid and the database with 1000 records on its disk.. The
secondl part hsconf igured tMS i t two bac-kenda, w htedatabase of -20
rcords, split evenly between the disks of the backends. The third part has

configured L48D with two beckends and with a database doubled of 2000 records,
where the disk of each backenid has 100 records. In Table 3 we notice one data
anomaly, the stanidard deviation for request (9) in the oite-backend-.With-1000-

rords conf igurat ion. S ince we d id not conduct an i nternalI performance meas-*
- urement on this request, we are noot sure what causes this skewed standard

deviation, and hence will not sttwrpt to offer an explanation of this anomaly. S

Given the data presented in Table 3, we can now attempt to verify or

disprove the two MES performance claims. We begin by calculating the
resons-tme improvsnant for the nine requests. In Table 4 we present the

reeponse-time improvement for the date given in Table 3. Notice that the
reaponse-time ipprovemant is lomat for request (1), which represents a

retrieval of tw recrd of the database. On the other hand, the response-time

DI OnBackndI ~ ~ j TWO

1i 2.060.0824 1 3.352l0.0=%
S 13. Ilo.05 7.511O.0391 14.24310.0185

31 26.492O.02441 14.164l0.0289i 26.73710.04M;I • .. 0 , .,4 5.005O.05M! 26.,WlO.02ll 5.17.083a.8:.

5 -21.4490.l "11.20 0.0375 121.500.0237
61 42.2350.o i 1 21.2MI0.042411 42.2870.04 0

7 1.2.2W 16.64210.02Mii 12.347 0.0371

8 122.53210.029611 22.76410.OC0i 22.58310.-1
_ 23.13_0.1111li 12._410.0_ _ 24.169l0.0181

Table 3, TNh RespogseTimn9 Without Internal
I~rmnce Evaluation Softwaretra

++ t jonse-Time

1 36.07
2 46.14
3

5 47.
648
74.~~8 47.71-"-

- ~9 47.21
No Internal-

Measurement SoftIra..

Table 4. a:Ri rsTire I oeent Between

improvement of request (4), which retrieves all of the database infornation is

highest, approaching the upper bound of fifty percent. In general, we find

that the response-time improvement increases as the nunber of records

retrieved increases. This seems to support a hypothesis that even if the data-
base is larger, the response-time improvement will reain at a relatively high

(between 40 an 50 percent) level.

Next, we calculate the response-time reduction for each of the nine

request. In Table 5 we present the response-time reductions for the data given
in Table 3. Notice that the response-time reduction is worst for request (1),

-17- %

•~~*.~**%%%-~..

:...:::

4.49

4" ,. , .
5 047
6 0.12
7 0.50

1K RecVz each

Measurement, SOtworel

ab 5. Respove-Ti rERe ir- Between

Which represents a retrievl of two records of the database. On the other

hand, the responsq -ime reductions for the requests which access Iarger por-
tions of the database, requests (4) and (6), have only a mall response-time
reduction. In general, we found that the response-time reduction decreases as
the nuWber of records retrieved increases, i.e., the response time remains
virtually constant. Again we seem to have evidence to support the
hypothesis that, as the size of the respoe set increases for the am.
request, the response-time reduction will decrease to a relatively low (0.1.

or less) level. . ,

Table 6 provides the results of external performance measurement of M3DS

with internal performance measurement software in place. There are two parts
to Table 6. Each pert contains the mean and the standard deviation of the

response-times for the requests (1) throuh (6). The two parts of Table 6 "

repreent, two different configurations of the WOS hardware and the database
capacity. Part one has configured WOE with one beckend and with the database
of 1000 records. Part two has configured MMS with two backends, with the Z.2-:.

database of 1000 records, split evenly between the disks of the backends. We .,%.,,

did notI m ure the respW e times with two thousand records distributed over

to bckends. We felt that no additional information would be gained by con-
ducting the measurements.

.
--. is--

A~ st One llcen wcked
r 2Ke K 1K ead

mean Istdev mean std v
1 3.2060.04361 2.2190.04
2__ 13.41810.017211 7.40110.0277

1.4 0.0 *

4 50.75010.03741 _.2O.O
5__ 20.i721.02711 11.2440.0528
6 41.262io.031i 21.5170.0575

Table 8. 1 b. Resrse Time (in second) Wi
m -ertomnce Usasuremnt Software

4.2. The Internal Performance Measurement Overhead

An interesting anomaly is discovered when we compare the response times
of the external and internal performance measurement tests, i.e., parts one

and two of Tables 3 and 6 for requests (1) through (6). We had anticipated
that the add1 tion of internal performance measurement software would add an
overhead to the response time of requests. In the transition from A.E to A.I

and from B.E to B.I we expected there to be in an increase in the response . -

times for the common requests. We actual ly found a general improvement, from
0.1% to 5%, in the response times of the requests when the internal perfor-

mance measurement software is part of the MBD6 code. What could have caused

the anomaly? One hypothesis is that this is due to the manner in which IMDS
is implemented on the backends. Currently, there is not sufficient virtual

memory per process available on each backend. The result is that disk overlays
are used to organize the code for each process in MSIC. The additional inter-
nal performance measurement code may cause the operating systm to overlay
differently, thereby benefiting the overall performance of MS. We still
believe that there is an overhead induced by the internal measurement code and
Table 7 provides evidence by demonstrating that the response-time improvement
achieved by adding a backend is inferior to the corresponding figures in Table
4.

I.. .V.
t. ,%-19-

- = --:e - _a, -J - - - .--- -- _.r'- . ..~ -_'. _'--.-"- -- i
- ' "

- __ . -. _- , ; rt3 .'

RINUSOrme- Time

41
_-N 47.85

Mu-n a- ti oc n

* ~Table 7. ~f~so~ T Lopo et BetWeen

4.3. The Interns I Performance Measurement Resu ts

Table 8 provides the results of the internal performsnie masuirement of

M3DS for a retrieval request. The times measured for each messg-a ing

routine are given for both request (1) and (2). The message-handling routins
are lI sted with the hUCS process which contains the routine. Althoug the
results are given to four decimal places, we-only trust the accuracy to the

second decimal place (see Section 3.4). Basically, what can we observe about%

the col lacted mWsae-bandI i ng times? We see that the control lir processes,

i.e., Request Preparation and Post Processing, spend very l ittle time in pro- I..

coming the retrieval request. This is a major design goal of WOB and is

necessary to prevent a bottleneck at the control ler when the number of bad-
ends increases substantially. It appears that this goal is mat successfully.

We also observe that the results obtained from Concurrency Control are con-
sistent and of short duration. This is expected since there is only one
request in the system at a time rand no access contention can occur. These

tables should then be considered as containing the best-came times. The major-

ity of work done in the backend is at Record Processing. Observing the process
timings in Record Processing, we see that, for both requests, the addition of

an extra backend reduces the record processing time by nearly half.

5. CON.LSNS AND FL MJE WOW

We have shown that the two basic performance claims of the multi-bckend
database system are val id. Mile these results are preliminary, they re
encouraging. Overa Il, the response-ti me improvement ranged fram 8.07 percent
to 48.94 percent, when the number of backends and their disks is doubled for

-,0-

P*-arp
-gO- ..

Pr~ A =Wding 1wr I___ _____I_'tg

Reslts 0. 180_1_.018
Request, ,~ IOM0

1 0 .02 0.0190
_____ _____t 2 0.0180 0.018"

" . Resut 2- 0 1 0.0: "

Post Iolct i 1 0.0465 0.0250
Processingi ResultsI 2 0.0890 0.0813

ramet Trapf r itI__ 1___:__ 1__0:8_

D id e. i 1 I0'0616 0.0510
Lkerd 2 0.01566 6 0.0666

'~ id 0Lked 2 0.05 0_I0

Cc~ De wjcy Dcf t rj II8:8.OWtI a 002 0.0433
r: y TraCfi 1 0.0425 0.0433

D1ci t 1 I .66 0.0433
TraffIc Unit, 2 "005M 0.016

1 0.0025 0.0016
:nie 2 0.0008 . 0.0008

rocessisg 2 1271 6.5716

2 00466 0.0433
D isl Adres 2 _0.0433_I003

Old 1 00130 00148
I-o 1 0o.8 0.0865

1 o.079 I 0.0741
Inptg~8tputI 2 1_ _ 000 80.72

Table 8. ,ma Pressing

t Tequ

the same database. The low end of the scale represented a request which

involved the actual retrieval of only two records. The high end represents a

request which has to access all of the database information. The response-

time reductions were also impressive, ranging from a 4.49 percent change to a
>:-.:0.12 change. In other words, when we double the numrber of beckends and their

dis4ks, the response time of a request is nearly invariant despite the fact

that the response set for the request is doubled. Another crucial discovery

-21-

: .S t..: .::..-. . .. : . :: :: : :: .: .: :,.'..-.,2..:.::.::...*. .-. ,-.-..

that we ade that the results were consistent and reproducible. The tests
wr conducted at least twice for iost of the request set, with the testing

done on different days by different people. The resulting data wes consistent

and reproducible. The data presented in this paper represents the last set of

tests for the rquest aet.

The next logical step in the performance of the multi-backend database

system is to extend the testing to include the other request types, update,

insert and delete. Additional ly, there are still some more tests to run on

the retrieval request. We should also investigate the effect of the direc-

tory structure on performance. In particular, we should try to determine how

much of an effect the descriptor definitions for a directory attribute have on

the performance data. Finally, we should conduct soe tests on the

s dory-mmory version of the directory tables to evaluate just how much an
effect this version will have on the perforamncm data.

BecauMe CS is intended for mi cropr ocesaor-mbed backend., winchester-

- type disks and an Ethernet-I ike broadcast bus, we will not continue our bench-

- mark work on the present WX-P~s configuration. Instead, we plan to download
*--OS to either MicroVaxs or Sun WrIkstations. With either choice, we can

utilize a broadcast bus, which wes not avai lable when the project began. We

may also eliminate all the physical and virtual mmory problems. In the new

env i ronment we can perhaps cbta in a more accurate masurement of the intern I

perfonmnce measurement software overhead, conduct a imore oough bencmrk-
ing of MECS, and study various bendmrking strategies.

-22-

,..

.-.,

Wt "U9) I.% % S' . %~ S.. V . - .' q ~ -

nSyrea] Bon., R., ,t I J'A.Ms~q9 "etedIp I mn~loofmvilti-
eds), Spri ngr-Ver ag,13.

no~8bj , ~l. "TeIrpl *tation of q Multi edDotba
~~4m. Paent;d Version lit r n -

nty I The r anagget
Nava~nery gda teS;inOot~e C i a, torna, r Io. n

R182 H,,X. PetfJJia 6 IKIbhp ,an a hki"ti ocndatbsSye

un.s Ohi v g ow y, Jul t i 588
i)1Inagv1bJ Hsio D K.nd eig aggt- riind AnaIt os of=

rnaitr .k 0 -~sem hni r- Oor Mnce 05 Inrvs 41 radUnct,
teey 1 0 Cei a, Meng

H~r8JAS,~ X. e t "'P Implementton f k lied SataasSytmr f I - hi i e rat a uli S ref Tineerdsa
Wprlteen" Te~hnal eport W8iM-NN8 V Potraut S Lol, Mon-

Expam gn, n apacn I ttrforum~nic stRrt," lDba ceaF~~Oh'8'J SJulye P.R,"AM pg o en~rgRltonlDtbs
7,hne, Ph ~~ srain h~ o Statee Linvrsty 1gVOL.

L~iqb] siao D.K gndMen~n, . J "Des ndAnal~is of.

ti-Wkend~~~~ b'% I lfrmne V
Og~m.'' .

IPOM~.v -. par

xpens~~~~~.- i n.a**rfI ecnic
8,~~~~~~~~~~~~~~ - h-;iosai niVLtIubsO ,Ags

D.S. t I "'Te Im I m;Wnat o Of illMu t /"1/

art I ~ae Eg~nj e?-23-w

O40chn~~~~~ ~ ~~~ i aIsot*-LhiotaeLnivr

d~ ~ ~tt. Tr lo, Janar 10&**PP- . .~2:': , ~.q - ~
r. * 841* *.h .t I I~ J , "Co -atv DM Pefomac Test'. Reprt, Nava Ocea

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron; Station
Alexatira, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Office of Research Administration1
Code 012A
Naval Postgraduate School
Monterey, CA 93943

Chalvuiant Code 52N1L 10 %i
Computer Science Department
Naval-Postgraduate School
Monterey, CA 93943

Prof. David K. Hsiao, Code 52Hq 130
Computer Science Department
Naval-ftstgraduate School
Monterey, CA 93943

Chief of Naval Research1
Arlington, VA 22217

AA

'8

K-AI

